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Our Adaptive Learning Platform (ALP)

ALP is a cloud-based data management, assessment, and
reporting platform that uses machine learning to combine and
give meaning tfo data from a variety of learning confexts.
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ALP's Learner Model

MACHINE LEARNING
ALP comparison data from
other learners

DIGITAL CONTEXTS

Behavioral measurements from
online activities: apps, games,

smart devices, wearables, etfc.

PHYSICAL CONTEXTS
Parent/teacher input about
offline activities: individual
work/play, group projects, etc.

ALP is designed to create a universal, longitudinal,
high-dimensional psychometric profile of a learner.

Our learner model can work across contexts and across
ecosystems to ensure that students are optimally engaged
wherever and whenever they are learning.
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Learning Analytics

e Learning analytics deciphers massive amounts of data generated in
different learning contexts.
o Assess students’ academic progress,
o Predict their future performance,
o |ldentify potential problems
e Forteachers:
o provide more targeted teaching interventions for students
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After School Learning

Event data as learners interact with a tablet with curricular content
from a Korean partner’s educational system.

> 200,000 learners in math, Korean, social studies and science,
following the Korean national curriculum.

Students in the program mostly work at home and are visited by @
teacher once a week.

The content is arranged in weekly topics with small content blocks
containing lectures and practice questions.

Each week ends with a test.

As the learners progress through the curriculum, they watch lectures,
answer anywhere from 50 to 100 practice questions, and answer a test
with 10-20 question:s.
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Teacher Reports

e Ourtechnology provides teachers with weekly reports that are
updated continuously, as well as monthly reports to track the learners’
progress over fime.

e These reports contain more information than just the correct/incorrect
nature of student answers.

e Our cloud-based analytics engine processes millions of data events
streaming in, using psychometric models that are regularly being
calibrated to construct hundreds of personalized metrics and insights.

e These insights are dynamically prioritized, with the most important
passed along to teachers to help all learners reach their full potential.
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What do the Reports Containe

For every weekly unit of the curriculum attempted by a learner, we
produce a report for that learner’s teacher.

e general behavioral insights,

e specific question-level insights,

e one overadll message about the learner’s behavior and achievement in
the week.
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Behaviors

The behaviors analyzed are:

skipping,

answering speed (too fast/slow),

guessing,

leaving parts of the question blank,

skipping the next question after getting the previous one wrong,
retrying/noft retrying incorrect questions,

watching/not watching all lectures, and

checking/not checking hints after getting a question wrong.
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Additional Metrics and Insights

e [n addition to these behavior metrics, the reports also include
e question insights based on
o personalized speed and
o ability estimates and
o performance on the weekly test.
e These details empower the teacher to
o quickly identify questions/concepts each student is struggling with,
o praise good study habits, and
o qassess student performance not only at a individual level but also
iIn comparison to peers.
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Answer Speed

e lLearner’'s expected time on the item given their working speed and
whether the learner is answering faster or slower than 90% of the other
students answering the item.

e A Bayesian personalized estimate is kept of his or her working speed
and updated based on items the student answered correctly,

e The estimate is based on a linear mixed model of the logarithm of the
response time, with the learner’s working speed estimate calculated
relative to the average time intensity of the item for other learners.

e c.g. if thelearner’'s response time is faster than 90% of other learners’
response times but this is expected given this learner’s working speed,
the item is not flagged as too fast.
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Item Difficulty

e Based on the learner’s ability estimate and question difficulty:

o questions are categorized as hard (<50% probability of getting the
question correct),

o easy (>80% probability of getting the question correct) and

o medium for a given learner.

e Ability estimates are based on an adjusted version of Bayesian Item
Response Theory models (Bock & Mislevy, 1982; Van der Linden & Glas,
2000)

e The final ability estimate and question difficulty estimates represent
how well a learner did compared to other learners at the end of that
edifion.
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Guessing

e We developed a general model for estimating thresholds for response
times that are short enough to suggest that students probably guessed
the answer (Wise & Kong, 2000; Baker et al. 2006)

e Comparing response times to pass-rates, most questions have a region
of low response times with low pass-rates and a region of higher
response times with higher pass- rates.

e These models have low mean squared error (~0.05) compared to
actual response time vs. outcome data.

e We found that our model needed at least 50 correct and 50 incorrect
responses to be reliable.
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Efficacy - comparison with historical data

e We used over 1.2 million individual scores of ~40,000 learners (for the
subject Korean).

e [n addition to the fixed effects, we also included the random effects to
address the variability of the difficulty of material and individual
differences in student performance.

e We also controlled for seasonal effects of curriculum.

e Statistically significant, positive intferaction effects starting around the
fifth month of the data (i.e., at least one month after the
implementation of the program),

e Indicates that the test scores relative to last year had shown
improvement.
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Efficacy - Comparing historical data
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Efficacy - Based on Teacher Views

e We compared students whose reports were more frequently vs. less
frequently viewed by their teachers.

e The improvement in scores relative to the never viewed group range
between 0.52 to 1.69 points

* 2018/1 2018/2 2018/3 2018/4 2018/5
<30% 0.72(*)
30% -60% | 0.52(.) 0.65(*) 0.73(*) 0.81(*) 0.93(*)
> 60% 0.98(***) 1.12(*) 1.20(***) 1.69(***) 1.40(***)
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Efficacy - Based on Teacher Views
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Other Features in the reports

Trends in behavior and achievement
Score Prediction

ltem Difficulty prediction

Adaptivity
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Personalized, Lifelong Leg



