Machine Learning on Spectral Data Of Enceladus' Plume

Himanshi Sharma M. M. Hedman Sanaz Vahidinia

The Problem: Saturn's moon Enceladus

Periodic Temporal Variations in Plume brightness due to Tidal stresses

Hedman et al. An observed correlation between plume activity and tidal stresses on Enceladus (Nature 2013)

The Data: Cassini cameras recorded aperiodic variations in the plume output

Variations across wavelength can be related to change in particle properties

Observed spectra

Mie Scattering theory can help derive information about particle size

Mie scattering theory describes how light scatters off a particle cloud when the particle size is approximately the same as the wavelength of scattered light.

Why Machine Learning?

- Large parameter space to explore
- Pattern recognition
- Determine the best fit model
- Can be robust to fluctuations/noise

	Max Radius = 2.0μ m; Power = -1.0
-	Max Radius = 4.4μ m; Power = -1.1
-	Max Radius = 2.7μ m; Power = -2.4
	Max Radius = 3.3μ m; Power = -1.8

No noise present in the theoretically generated data

Data Augmentation: How to make the predictions Robust against noise?

Mie spectra with added noise = Mie spectra + [(Standard normal distribution) * (Error on Plume spectra)]

Feature Engineering: What set of features to use?

Mie spectra/Theoretical Spectra

Option 1: Linear and quadratic fit parameters of the spectra

Option 2: Brightness at different wavelengths as features

Cross validation scores for a few of the compared models

Which model to choose?

Machine Learning Algorithm

Comparing results obtained using the ML Model

Mie Spectra/Theoretical Spectra plotted over Observed Spectra

Altitude (in km) = 50 KNRegressor w feature scaling

Orbital Phase/Max Radius/Power

Results: Enceladus Plume particles' average size estimated using Machine Learning

Let's connect!

LinkedIn: https://www.linkedin.com/in/himzphysics/

Email: hbbhardwaj02@gmail.com