Ay 10 - Fall 2006

Review Outline for Final Exam¹

1. Lecture 1

- (a) Astronomy vs. astrology
- (b) Occam's razor: what is it?
- (c) Retrograde motion (qualitatively)
- (d) Kepler's laws (qualitatively)
- (e) Newton's laws (especially gravity, you should know Newton's law of gravity quantitatively)

2. Lecture 2

- (a) Be comfortable using powers of ten and scientific notation
- (b) Be comfortable with simple unit conversions
- (c) Be comfortable estimating quantities (e.g. how much water have you drunk in your life)
- (d) Parallax: both qualitatively and quantitatively

3. Lecture 3

- (a) What is a spectrum? Be ready to interpret spectra
- (b) Understand properties of light: λ , ν , E (the energy of individual photons), the speed of light, c (Question 5 on problem set 2 would be a great one to go over again)
 - i. How are λ and ν related?
 - ii. How are E and ν related?
- (c) Be familiar with the electromagnetic spectrum (e.g. do radio waves have longer wavelengths than visible light? Do red visible photons have more energy than blue visible photons? etc.); no need to memorize specific wavelengths

- (a) Doppler effect: qualitatively and quantitatively (Problem set 2, questions 2 and 4 are good to review)
- (b) Blackbody radiation:
 - i. What is blackbody radiation?
 - ii. Be able to plot a blackbody spectrum
 - iii. Know Wien's law
 - iv. Don't worry about the Stefan-Boltzmann law just yet, we'll get to it later

 $^{^1{\}rm Thanks}$ to Onsi Fakhouri and Anna Treaster for putting this together.

- (c) Emission and absorption lines: look at problem set 3, question 1; understand how energy levels work
 - i. Understand how emission lines are formed
 - ii. Understand how absorption lines are formed

- (a) More on emission and absorption lines
- (b) Luminosity, flux, and the inverse square law for light
- (c) Telescopes:
 - i. Collecting power (a.k.a. collecting area) qualitatively and quantitatively
 - ii. Chromatic aberration (qualitatively)

6. Lecture 6

- (a) Diffraction limit (qualitatively and quantitatively)
- (b) Atmospheric blurring
- (c) Adaptive optics
- (d) Benefits of telescopes in space

7. Lecture 7

- (a) Detectors (qualitatively)
- (b) Radio telescopes
- (c) Interferometry (qualitatively)

8. Lecture 8

- (a) Phases of the Moon
 - i. Orbit of Moon around Earth
 - ii. Sidereal month
 - iii. Synodic month
 - iv. Same face of Moon always faces Earth
- (b) Tides on Earth created by Moon and Sun
- (c) Eclipses of the Moon and Sun
 - i. Total versus partial eclipses
 - ii. Inclination of Moon's orbit compared to Earth's orbit (do we see an eclipse every time the Moon orbits Earth?)

- (a) Earth's atmosphere
 - i. Scattering: blue light scattered more than red
 - A. Sky blue

- B. Sunsets red
- ii. Refraction
- (b) Earth's elliptical orbit
- (c) Seasons
 - i. Winter solstice and summer solstice
 - ii. Spring equinox and autumnal equinox
 - iii. Why some seasons are warmer and other colder based on the tilt of the Earth

- (a) Greenhouse effect (how it works, qualitatively)
- (b) Earth's magnetic field, Van Allen belts, and aurorae
- (c) Kepler's three laws (qualitatively and quantitatively), Newton's version of Kepler's third law (see problem set questions too!)
- (d) Mercury
 - i. Precession of Mercury's orbit
- (e) Venus
 - i. Evening/Morning Star
 - ii. Runaway greenhouse effect
- (f) Mars
 - i. Why it's red
 - ii. Dust storms, windy

- (a) Asteroids
 - i. vs. meteor, meteorite, meteoroid (see problem set)
- (b) Comets
 - i. Two tails
- (c) Meteor showers
- (d) Gas giants: Jupiter
 - i. Most massive
 - ii. Massive storms on surface, e.g. Red Spot
 - iii. Io: most active object in solar system, why does it have volcanoes?
 - iv. Europa: possible ocean
- (e) Gas giants: Saturn
 - i. What are the rings made of?
- (f) Gas giants: Uranus
 - i. Large tilt $(97 \text{ degree tilt}) = \log \text{ seasons}$
 - ii. What are shepherd moons?

- (g) Gas giants: Neptune
- (h) Kuiper-belt, Oort cloud
 - i. Understand the differences between the two
 - ii. Understand what the two are made up of
 - iii. Which is the source of short-period comets? Long-period comets?

- (a) Condensation theory of solar system formation
 - i. Understand how it works, step by step
- (b) Extrasolar planets/solar systems
- (c) Different techniques for finding extrasolar planets
 - i. Astrometric technique
 - ii. Doppler (radial velocity) technique
 - A. Have found lots of nearby extrasolar planets
 - B. What are hot Jupiters?
 - C. Inclination gives us a lower limit on the mass
 - iii. Transit techniques
 - A. Understand, quantitatively, how to calculate the fraction of starlight that is blocked when the planet passes in front of the star
 - iv. Other techniques

- (a) The Sun
 - i. What is the photosphere?
 - ii. What is the corona?
 - iii. What are Sunspots and why are they dark?
 - iv. Hot core gives us blackbody continuum, outer layer blocks certain wavelengths
- (b) Spectral classification (OBAFGKMLT)
- (c) Stephan-Boltzmann law (quantitatively)
- (d) Inverse square law (quantitatively)
- (e) HR Diagram
 - i. Understand what it is!
 - ii. Be able to plot one
 - iii. Be able to label all the important regions
- (f) Masses of stars
 - i. 3 techniques for getting the mass of binary star systems
 - A. Doppler measurement of shifts in the spectra
 - B. Visually measuring the orbit
 - C. Eclipsing binaries (similar to transit method for extrasolar planets)

- (g) Mass-Luminosity relation: $L \propto M^4$
- (h) Stellar lifetime relation: lifetime $\propto \frac{\text{energy available}}{\text{stellar luminosity}} \propto \frac{M}{L} \propto \frac{M}{M^4} \propto M^{-3}$
- (i) Star clusters
 - i. Open vs. Globular
 - ii. How are they related to stellar ages?
 - iii. How can we tell the age of a cluster (see problem set)

- (a) Interstellar Matter
 - i. Absorption vs. scattering/reddening
 - ii. Emission vs. reflection nebulae
- (b) Star formation: from cloud collapse to protostar
- (c) Stellar evolution (be sure to know how the different phases work, and know how to plot them on an HR diagram!)
 - i. Pre-Main Sequence: powered by gravitational energy, contracting core heats up
 - ii. Birth of a star
 - A. Fusion begins
 - B. Hydrostatic equilibrium: gravity vs. pressure
 - iii. Main Sequence
 - A. Core is hot, can fuse
 - B. Energy released when converting hydrogen into helium is $0.007m_Hc^2$ where m_H is the total mass of hydrogen converted into helium
 - C. Proton-proton chain
 - D. $E = mc^2$
 - E. Photons generated by p-p chain take a long time to get out of the Sun's core
 - F. Lifetime on Main Sequence (Sun is 10 billion years)
 - iv. Death of stars, low mass case $(M < 8M_{\odot})$
 - A. Red giant phase
 - B. Planetary Nebula
 - C. White Dwarf

- (a) Stellar evolution continued (be sure to know how the different phases work, and know how to plot them on an HR diagram!)
 - i. A closer look at White Dwarfs:
 - A. Electron degeneracy pressure fights gravity
 - B. Stored up heat is slowly radiated (no fusion)
 - C. Chandrasekhar mass (equal to $1.4M_{\odot}$)
 - ii. Death of High Mass stars $(M > 8M_{\odot})$

- A. Blue and red supergiants
- B. Iron core is reached, fusion cannot continue
- (b) Mass exchange in binary systems
 - i. Roche lobe
- (c) Novae

- (a) Novae
- (b) Supernovae
 - i. Type I vs. Type II
 - A. What are the differences?
 - B. In what regions of galaxies do we see them? Why?
 - C. Understand qualitatively what happens during a type I or type II supernova
 - D. Role of neutrinos in type II supernovae
 - E. Create heavy elements and distribute them
 - F. Recycles stellar material
 - ii. Supernova remnant (e.g. crab nebula)
 - iii. Supernova rate in the Milky Way, why don't we see this many?

17. Lecture 17

- (a) Type Ib, type Ic supernovae
- (b) GRBs
 - i. Potential GRB suspects
 - ii. Flavors of GRB bursts
- (c) Brown Dwarfs

- (a) Neutron star birth
 - i. Neutron degeneracy pressure
 - ii. Role in supernovae
- (b) Neutron star size, mass
- (c) Pulsars
 - i. Why neutron stars?
 - ii. Why would a neutron star turn off and on?
 - iii. Why aren't all neutron stars pulsars?
 - iv. Millisecond pulsars are spun up by matter falling in from a companion
- (d) Neutron stars in binaries: bursts of X-ray radiation
- (e) Testing General Relativity
 - i. Precession of Mercury's orbit

- ii. Bending of starlight near the Sun
- iii. Gravitational redshift of light
- iv. Pulsar binaries (periods decay because of gravitational waves)

- (a) Formation of Black Holes
- (b) Schwarzschild radius
 - i. Event horizon is this far from singularity
- (c) Singularity at the center
- (d) Photons and black holes:
 - i. Gravitational redshift of photons
 - ii. Photon sphere
- (e) Properties of black holes:
 - i. Not cosmic vacuums
 - ii. Very simple objects ("no hair theorem")
- (f) Effects around black holes
 - i. Spaghettification
 - ii. Time slows as gravitational field intensifies
- (g) Accretion disks around black holes
- (h) Spinning Black Holes
- (i) Evaporating Black Holes
- (j) Wormholes

20. Lecture 20

- (a) Spiral galaxy structure: bulge, halo, disk, nucleus
 - i. spiral arms rotate but don't wind up or unwind
 - ii. lots of gas and dust so lots of new star formation
- (b) measuring distances using variable stars: Cepheids, RR Lyrae stars
 - i. period/luminosity relation for Cepheids
- (c) stars, like the Sun, orbit around the center of a spiral galaxy

- (a) rotational velocity curves
 - i. know how to get mass profile knowing rotation curve or vice versa
 - ii. rotation of galaxies versus solar system
- (b) dark matter
 - i. needed for rotation curves to make sense

- ii. candidates for dark matter are MACHOs (black holes, white dwarfs, red dwarfs, brown dwarfs) and WIMPs (weird subatomic particles)
- (c) Elliptical Galaxies
 - i. No gas and dust so no new star formation
 - ii. No spiral arms, no disk
- (d) Irregular Galaxies
 - i. Examples are the small and large magellanic clouds, the nearest galaxies to the Milky Way

- (a) Galaxy clusters
 - i. small groups of around a dozen galaxies to clusters with over 10,000 galaxies
 - ii. Superclusters are clusters of clusters
- (b) gravitational lensing
 - i. light bent by lots of mass, like a galaxy cluster, to make an image brighter or make multiple images of one object
 - ii. used as a way to find dark matter clumps
- (c) Hubble's Law
 - i. recession velocity increases with distance
 - ii. Slope is Hubble's constant, H_0
 - iii. $v = H_0 * d$
- (d) Redshift: $z = \frac{\lambda_{\rm obs} \lambda_{\rm em}}{\lambda_{\rm em}}$ and for close objects $z \approx \frac{v}{c}$
- (e) lookback time increases as redshift increases
- (f) ways to measure distance
 - i. variable stars liked Cepheids
 - ii. supernova type Ia
 - iii. Tully-Fisher Relation

23. Lecture 23

- (a) AGN (active galactic nuclei): massive black holes produce huge luminosities
 - i. Most famous type is quasars
 - ii. Black hole creates extremely bright jets of radiation
- (b) black hole at the center of the Milky Way: big, but not as big as an AGN black hole

- (a) large scale structure of the universe seen to about 300 Mpc
- (b) Cosmological Principle: universe is homogeneous (even) and isotropic (has no preferred direction)
- (c) Cosmological redshift because the space of the universe is expanding

- (d) age of the universe is roughly $\frac{1}{H_0} = 13$ to 14 billion years = 13 to 14 Gyr
- (e) Olber's Paradox: universe can't be infinite and have existed forever; now we know universe had a beginning point
- (f) Big Bang Theory
 - i. Universe started at a single point and expanded outward
 - ii. Scale factor R increases with time
- (g) Critical density, $\rho_{\rm crit}$, is density needed to make the universe closed
 - i. $\Omega = \frac{\rho}{\rho_{\rm crit}}$ is the density parameter (can define for matter, dark energy, or anything else in the universe)
 - ii. Fate of the universe (based on the density of matter)
 - A. $\Omega_m > 1$ universe collapses back on itself (closed universe)
 - B. $\Omega_m = 1$ universe expands forever but expansion rate slows to 0 as time goes to infinity (flat universe)
 - C. $\Omega_m < 1$ universe expands forever and slows down slightly but never gets to an expansion rate of 0 at a time of infinity (open universe)
 - D. $\Omega_m = 0$ universe expands forever and never slows down (empty universe)
- (h) Shape of the Universe
 - i. Closed
 - ii. Open
 - iii. Flat

- (a) supernova type Ia as standard candles for distance measurements
- (b) Universe's expansion is accelerating!
- (c) dark energy
 - i. anti-gravity force powering the expansion of the universe
 - ii. we don't know what it is
 - iii. will cause the universe to expand forever at an ever-increasing rate
- (d) CMB (cosmic microwave background)
 - i. Radiation from about 300,000 years after the Big Bang
 - ii. At a temperature of about 3 K
 - iii. Has tiny fluctuations that are uniform across the whole sky
 - iv. Created when photons stopped interacting with newly formed hydrogen atoms
- (e) Our Universe
 - i. 4% normal matter (stuff we can see)
 - A. 0.5% stars and visible gas
 - B. 3.5% hot interstellar gas
 - ii. 23% dark matter
 - iii. 73% dark energy

iv. $\Omega_{tot} = 1$ so universe is flat

26. Lecture 26

- (a) Stages of the Universe
 - i. Big Bang
 - ii. Planck Era (all forces unified)
 - iii. GUT Era (gravity becomes a unique force, rest of the forces are unified)
 - iv. Particle Era (matter and antimatter particles)
 - v. Nucleosynthesis (protons and neutrons formed)
 - vi. Era of Nuclei (hydrogen and helium nuclei float around in a hot plasma)
 - vii. CMB released at end of the era of nuclei
- (b) Big Bang's successes:
 - i. Predicts CMB perfectly
 - ii. Predicts abundances of hydrogen, helium, deuterium, etc.
- (c) Theory of Inflation
 - i. Says universe expanded enormously in a tiny fraction of a second right after the Big Bang
 - ii. Explains why the universe is flat (i.e. solves the Flatness Problem)
 - iii. Explains why the universe is homogeneous and isotropic (i.e. solves the Horizon Problem)

- (a) Possible signs of life:
 - i. Liquid water on Mars or moons in our solar system
 - ii. Simple amino acids in meteorites
- (b) Drake Equation:
 - i. $N = R_* * f_p * n_e * f_l * f_i * f_c * L$
 - ii. Tells how many communicating civilizations we expect to find in our Galaxy
 - iii. Some parameters are scientific (especially the first few), but the variables at the end are adaptable to personal belief
- (c) Space missions have been sent out to try to communicate with other life (Voyager I and II)
- (d) SETI: trying to communicate with radio waves